Pricing Login
Pricing
Support
Demo
Interactive demos

Click through interactive platform demos now.

Live demo, real expert

Schedule a platform demo with a Sumo Logic expert.

Start free trial

What are MTTR and MTTI?

What are MTTR and MTTI?

...and why are they important to your DevOps team?

What are MTTR and MTTI and why do they matter?

What is MTTR? Mean Time to Resolve (MTTR) is the average time between the start and resolution of an incident. But first you have to identify the problem.

That’s why Mean Time to Identify (MTTI) is also an important key performance indicator (KPI).

As DevOps teams release more often and automate more, performance and availability problems have increased. The result is Ops is spending more time troubleshooting and development is drawn into production troubleshooting. Reducing MTTR and MTTI is more crucial than ever.

How to Improve DevOps MTTR

By monitoring deployments in real time, you can drastically improve MTTI from days to minutes. Sumo Logic delivers a comprehensive strategy for monitoring application and system events, stats, network traffic and logs all in real time. So you can be proactive in identifying unexpected conditions and undesired behaviors.

Once you’ve identified an issue, Sumo Logic provides tools to help you to quickly troubleshoot issues, perform root-cause analysis and dramatically decrease MTTR.

For example, tools like Live Tail let you tail log files and apply pattern searches to bring up near real-time metrics within seconds. This can significantly lower the time developers spend troubleshooting issues in production and ultimately reduce MTTR.

How to Reduce your MTTI and MTTR with a Single Click

Using Machine Learning for Better MTTR

Existing approaches for application monitoring and application performance management are no longer sufficient to provide the complete view into the volume, variety, and velocity of data being generated across the full stack, from bare metal to microservices.

Using the Sumo Logic LogReduce® engine and LogCompare tool, you can harness the power of machine learning to reduce the noise within your logs and identify key patterns. Using these patterns, developers can identify and remediate bugs and issues within code or the application, among other things.

LogCompare takes this one step further, providing the ability to compare the key log patterns and signatures from one period of time to another.

With built-in pattern detection, anomaly detection, transaction analytics, outlier detection, and predictive analytics, Sumo Logic provides real-time visibility across thousands of data streams and seamlessly detects and predicts conditions that indicate potential performance, reliability or security issues.

Instant AWS visibility and monitoring

“Sumo Logic provides us instant visibility into AWS services. We were able to get AWS ELB dashboards in a few minutes, which was very impressive.”

Hootsuite

Alex Zadorozhnyi

Director of Technology